A High-Level Modeling Language for the Efficient Design,
Implementation, and Testing of Android Applications

John Abou-Jaoudeh Kinan Dak-Al-Bab
Mostafa El-Katerji ~ Mohamad Jaber

American University of Beirut, Beirut, Lebanon

{jia03,kmd14,mme85}@mail.aub.edu,
mj54Q@aub.edu.lb

Abstract

Developing mobile applications remains difficult, time con-
suming, and error-prone, in spite of the number of exist-
ing platforms and tools. In this paper, we define MoDroid,
a high-level modeling language to ease the development
of Android applications. MoDroid allows developing mod-
els representing the core of applications. MoDroid provides
Android programmers with the following advantages: (1)
Models are built using high-level primitives that abstract
away several implementation details; (2) It allows the def-
inition of interfaces between models to automatically com-
pose them; (3) Java native android can be automatically gen-
erated along with the required permissions; (4) It supports
efficient model-based testing that operates on models. MoD-
roid is fully implemented and was used to develop several
non-trivial Android applications.

1. Introduction

Android is the most popular platform for mobile devices,
with over 84% of market share at the end of 2014. Yet, cre-
ating a correct and efficient Android application remains a
difficult endeavor for several reasons that can be categorized
under design or testing issues.

Issues when designing an Android application. First, the
programming model in Android involves different com-
ponents (e.g., Activity, Service, BroadcastReceiver,
ContentProvider, etc.), with a complex interaction model
between these components (e.g., Handler, Intent, etc.).
Second, to separate the internal representation of informa-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

SLE ’15, October 25-27, 2015, Pittsburg, USA.

Copyright © 2015 ACM 978-1-nnnn-nnnn-n/yy/mm. .. $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

Ylies Falcone

Univ Grenoble Alpes, Inria, LIG F-38000,
Grenoble, France

ylies.falcone@uijf-grenoble.fr

tion from its presentation to the user, most of the frame-
works supporting the development process use the Model-
View-Controller (MVC) design pattern to split an applica-
tion into three interconnected parts. However, as applications
become more complex, the MVC pattern must be augmented
with a new paradigm that guides developers on how to split
the core of an application into different interconnected parts.
Such paradigm shall facilitate and encourage the concurrent
development of an application by several developers. Third,
Android provides a protection mechanism to devise-specific
features (e.g., GPS, camera, vibrator, internet, SMS, address
book, SD card, etc.) by offering a specific set of program-
matic APIs to access them. Then, the application configura-
tion file (AndroidManifest.xml) must explicitly include
access permissions for all features that are used within the
application. At installation, the application is given permis-
sion to the corresponding features (from the configuration
file) and the user will be aware about the required permis-
sions. If an application calls an API to access a specific fea-
ture that requires a permission access and the configuration
file does not contain that access permission, a runtime excep-
tions will be raised at the start-up of the application. Clearly,
users prefer applications with minimum set of permissions.
This protection mechanism is often error-prone and in most
of the cases developers end up using permissions they do not
require in their code, or the opposite [?].

Issues when testing an Android application. On the other
hand, ensuring that applications are performing as required
has become more challenging given the daily dynamic
change in the domain of mobile technology. Application
users mainly face problems of the following kind: incorrect
behavior, crashes, and Application becoming Not Respon-
sive (ANR), etc. Keeping in mind the complexity of mobile
application development, and the inability to eliminate bugs
and errors, an essential component of mobile development is
testing. The process of Mobile Application Testing is used to
detect the errors that might have occurred during the devel-
opment of the application, to ensure that user expectations
are met, and to make sure that applications have been exe-

cuted properly. This is essential to be done by application
developers who aim to keep their customers satisfied, and
entertained by the final product. We extend our Meta-Model
framework by integrating a model-based testing component
that allows to easily write test cases using high-level primi-
tives and to efficiently execute them.

Contributions. The challenges of programming mobile
applications have prompted us to reconsider the best prac-
tices of their design development. For this purpose, a frame-
work with the following features is desirable: (1) the frame-
work should abstract away different implementation de-
tails; (2) decompose the development process into different
stages; and (3) include automated code manipulation and
generation. To do so, we define a Meta-Model for the de-
velopment of mobile android applications. Meta-modeling
drastically improves flexibility of development, hence allows
us to manage applications more easily.

The Meta-Model consists of a set of modules that repre-
sent Graphical User Interfaces (GUIs) and their respective
handlers in an abstract and a simpler way that Native Java
Android. We implement the Meta-Model along with several
modules in MoDroid to tackle the aforementioned problems.
MoDroid contains the following modules:

1. A composition module takes as input Android Java mod-
els and the connections between them. The composition
module allows to easily parallelize the development pro-
cess.

2. A permission analysis that automatically discovers the
required permissions of an application.

3. A code generator automatically generates native Android
Java code given an android Java model.

4. An activity-builder module automatically builds an activ-
ity in the Android Java model given an XML file represent-
ing that activity.

5. An efficient model-based testing.

Our framework facilitates and speeds-up the development
process. It transforms an Android application into an An-
droid Java model that is compliant to the Meta-Model and
contains all the necessary information about the application.
The current version of our Meta-Model covers a subset of
Android API that includes all the main constructs and func-
tionalities. Consequently, it is designed with backward com-
patibility in mind so that developers can write native An-
droid code within the model to use features currently not
covered within the Meta-Model.

Paper organization. The rest of this paper is structured
as follows. Section 2 presents the Meta-Model. The follow-
ing sections present the components associated to the Meta-
Model: model composition is presented in Sec. 3; and auto-
matic permissions detection is presented in Sec. 4; model-
based testing framework is presented in Sec. 5; and auto-
matic code generation (from high-level model to native an-

droid) is presented in Sec. 6. Sections 7 and 8 describes
MoDroid, a full implementation of our framework and some
benchmarks. Section 9 discusses related work. Section 10
draws some conclusions and perspectives.

2. The Android Meta-Model

The Meta-Model consists of a set of modules used to model
the core of an Android application. The Meta-Model allows
to model an Android application as a Java object. The mod-
eling process abstracts away implementation details. More-
over, the resulting object model can be easily and efficiently
manipulated by applying model transformation and compo-
sition as described in the remainder of this paper.

The Meta-Model consists of a hierarchy of classes. The
top element of the hierarchy is the project: LibModel. Each
instance of this type represents an independent application.
A LibModel consists of a set of activities mapped to names,
global variables, and meta-information related to the project.

An activity LibActivity is the android equivalent of
a window or frame. The developer can create instances of
LibActivity, fill it up with GUI elements, and then add
it to a LibModel. A LibActivity can contain GUI el-
ements (e.g., layout, button, etc.), packaging information,
and activity scope variables. The developer can also provide
methods for handling events related to the activity’s life cy-
cle: onCreate, onStop, etc. Moreover, LibActivity has a
constructor that takes an XML file as argument containing
a view description of the activity and automatically instan-
tiates the corresponding object. That is, we can still benefit
from MVC design pattern supported for native android de-
velopment.

GUI elements, also called views, are the building blocks
of an application. All GUI elements inherit their basic at-
tributes from LibView, an abstract class that contains the
basic attributes and methods for the manipulation of appear-
ance of an element such as width, height, padding, etc. Views
are categorized into Controls, and Layouts. A view can be
either added to an Activity or to a layout. The controls cur-
rently provided by the Meta-Model, prefixed with Lib, are
the following: Button, ImageButton, TextView (equiva-
lent to a Label), TextField, ToggleButton (on/off but-
ton), Spinner (similar to drop-down list), RadioButton,
CheckBox, etc.

Layouts are special views that can contain other views.
They control the position of the view within the activity. A
layout is treated as a View. It has its own attributes such
as width, height, and others. It can be added to activities, or
to other layouts. The layouts provided by the Meta-Model,
prefixed with Lib, are the following: LinearLayout (views
are placed in order in a line; can be horizontal, or verti-
cal), RadioGroup (a LinearLayout that acts as a RadioBut-
ton group as well), FrameLayout (displays all views in the
same position above each other), RelativeLayout (con-

trols the position of views by using them as anchors), and
TableLayout (organizes the views into rows and columns).

These views cover all the basic elements of Android ap-
plications. Moreover, it is possible to extend the Meta-Model
by adding more views in an easy and modular way. Figure 1
depicts the basic elements of the Meta-Model.

and others
LibModel LibTest LibTextField | o o
(i)
LibActivity one LibHandler
LibActivity Libhodel Lotlandier
has many has isa
many
has "
LibActivity many LibHandler LibButton
LIbH?ndler LibActivity has LibHandler
' has many :
one .
e is al

LibVi . .
briew LiblmageView LibTextView

has one is al is al

LibView <«

has many Tis a has many T isa
LibRelativeLayout LibLinearLayout
LibView LibView and others
LR
LibView LibView

Figure 1. Basic elements of the Meta-Model

Hereafter, we show a step-by-step how to build a sim-
ple health application using our paradigm. The health ap-
plication consists of two basic modules: (1) Body Mass In-
dex (BMI); and (2) Menu Planner/Meal Planner. The BMI
module is composed of two activities. The first activity man-
ages user inputs (weight and height) and computes the BMI.
Then, it sends the computed value to the second activity. If
the user does not enter a value and clicks on compute, the
phone vibrates signaling an error. Moreover, the user inputs
are stored in the activity scope variables. The second activ-
ity is where the BMI value is displayed. From this activity,
a user may either navigate back to activity one or navigate
to Menu Planner/Meal Planner module. Listing 1 shows a
snapshot of the code of BMI module.

2.1 Handlers

Some views have special events that trigger specific han-
dlers (e.g., on button click). A developer can either write
a method which handles the event or use some pre-defined
shortcuts. The code within the handlers can use functional-
ities of the Meta-Model or can directly use native Android
code. Views can be accessed within handlers by passing
them as parameters of the handler method. A handler can
be used for the communication between activities. For ex-
ample, when a button is clicked or some text filed gets mod-

ified, one common functionality is to go to another activity.
For a given view, one specifies its handler method by calling
setOnClickHandler. The Meta-Model simplifies control
transfer by using high-level shortcut. For instance, within a
handler, startActivity method redirects to another activ-
ity by taking the name of the activity and any view objects as
parameters. Another shortcut is to directly specify the next
activity in the setOnClickHandler.

Data parameters can be sent with a control trans-
fer to communicate between activities. These pa-
rameters can be passed either as parameters (1) to
startActivity along with the next activity; or (2) directly
to setOnClickHandler.

Listing 2 shows the code of the button from the first
activity where its handler computes the BMI value and send
it to the second activity. Note that, if the user does not enter
a value and clicks on compute, the phone vibrates signaling
an error.

These parameters can be accessed in the main method
by using a special formatted string (@param_{i} to get the
i" parameter). Within a handler, these parameters can be
also accessed by calling LibActivity.getParameter (i)
to get the i parameter. Listing 3 shows a snapshot of the
code that sets some of the views of the second activity. It
sets the the value of a text view to the passed parameter that
comes from the first activity. Also, it uses a shortcut to set
the handler of the button that redirects to the first activity.

2.2 Resource Management

One of the most effort consuming task in developing An-
droid applications is resource management: images, applica-
tion icons, and other types of resources. These resources are
copied to specific folders within the resource folder. In our
Meta-Model, resources are automatically added and gener-
ated into their corresponding folders. For example, to use an
image, the developer only needs to add the path of the im-
age/icon to be used. Listing 4 shows an example that speci-
fies the icon of an application, displays an image, and create
a buttong with an image displayed.

3. Projects Composition

Decomposing projects into smaller parts is a key concept in
software engineering. Using the Meta-Model, it is possible
to develop several models and automatically compose them
according to a user-provided configuration. The composition
operation takes as input a configuration file that specifies the
links between the interfaces of models. Each link specifies
some control and data transfer that have to occur upon the
occurrence of an event in the models: the activity from an-
other project that has to be executed and the parameters that
have to be sent.

Principles. Given n models my,ms, ..., m,, where m;
consists of aj, aj, . .., a}, activities. Recall that each activity
has views that may have handlers. Each handler runs some

Listing 1. Snapshot of the code of BMI module.

LibModel bmiModel = new LibModel("bmiModel", "health.app", "John");

LibActivity userInputActivity = new LibActivity();
LibActivity resultActivity = new LibActivity();

bmiModel.addActivity(userInputActivity, "userInputActivity");

bmiModel.addActivity(resultActivity, "resultActivity");
setUserInputActivityLayout(userInputActivityLayout);

setResultActivityLayout (resultActivityLayout);

Listing 2. Example of a handler with data transfer.

calculateButton.setOnClickHandler ("Handler:health.BMI.calculate", height, weight);

// package health.BMI
public void calculate(LibView ht, LibView wt) {

if ('ht.getText () .equals("") && !'wt.getText().equals("")) {

double val = computeBMI (ht, wt);

LibModel.startActivity("resultActivity", val);

}

else {
Vibrator v = (Vibrator) getSystemService(Context.VIBRATOR_SERVICE);
if (v.hasVibrator()) v.vibrate(500);

}

Listing 3. Example of shortcut handler and data access.

bmiValueText.setText ("Q@param_0") ;

goBackButton.setOnClickHandler ("GoToActivity:userInputActivity");

Listing 4. Example of resource management.

model.setIcon("images/application. jpg"); // sets the application icon

// Create a label to display the given image.

LibImageView imageView = new LibImageView("images/image.jpg", ...);

// Create a button with an image displayed on it.

LibImageButton imageButton = new LibImageButton("images/button.jpg", ...);

code that may transfer the control to another activity that can
be an identified activity in the model or a symbolic activity
(i.e., an activity which is identified by a symbolic value).
Symbolic activities within a handler are specified by using
method goToUnknown that takes an identifier and a set of
objects (to be passed to the other activity) as parameters. A
model that has a handler that transfers to a symbolic activity
is considered as a partial model.

If a handler only redirects to a symbolic activity, it is
possible to use pre-defined high-level shortcut to do so.
At an abstract level, the composition module relies on two
functions: interface that returns the symbolic activities in
a model, and, configuration that associates (concrete) ac-
tivities to symbolic activities. The definition of function
interface is obtained by an automatic analysis of models
(see Sec. 7). Function configuration is defined by the user
through a configuration file. A configuration file is of the

Listing 5. General shape of a configuration file.

<New Project Name>
<New Project Package>
<New Project Author>

<Model>.<Activity>; //indicates the main activity of the composed project
<Model>.<Unknown ID> -> <Model>.<Activity Name>; // mapping
<Model>.<Unknown ID> -> <Model>.<Activity Name>; // mapping
<Model>.<Unknown ID> -> <Model>.<Activity Name>; // mapping

form depicted in Listing 5. It first contains the new project
name, package, author and main activity. Then, it defines the
mapping between identifiers and activities of different mod-
els.

Let m; be a partial model with some of its handlers
associated to symbolic activities d}, id} (interface(m;) =
{idy, idy}). Let aj, be an activity of model 1, one can have
configuration(id}) = ai,, which means that identifier id’
of model m; is mapped to activity af of model m;.

Example. Figure 2 is an example of two partial models M
and M,. The handler of button button,, a handler of activity
A, and the handler of button buttons redirect to symbolic
activities though interfaces I;, I, and I3, respectively. The
configuration file connects I, I, and I3 to activities Ag, Aq
and Ay, respectively.

— 713

@ — 71,
b]
button, @

21, Connections
M;.I; — My.As
M;.Ip — Mp.Ag
My.I3 — My.Ag

Figure 2. Example of models composition.

Listing 6 shows a snapshot of the shortcut handler of the
button from the second activity (result activity) of the health
application that redirects to a symbolic activity of a different
model through the interface menuPlannerInterface.

Finally, models can be composed to build the final project
by using LibModel’s constructors that takes a configuration
file and a set of models. The composition of BMI and Menu
Planner modules is depicted in Listing 7.

Listing 8 shows the configuration file that connects (1)
the menu planner interface of BMI calculator model to user
information activity of the menu planner model; and (2)
the BMI calculator interface of menu planner model to user
input activity of BMI calculator model.

Note that, a set of models can be composed successively
to build the final model. Listing 9 shows an example of
successively composing three models.

Although mobile applications almost certainly harbors
undetected errors, using models composition approach, it is
possible to directly apply software testing paradigm to re-
duce and locate them: unit and integration testing. This can
be done by testing partial models separately (unit testing) to
find local errors and then test the complete model (integra-
tion testing) to find interface errors.

4. Permission Auto-detection and Generation

Manually managing permissions in the configuration file
is time consuming. It often entails several compilation at-
tempts of the application to narrow the proper set of required
permissions. Consequently, most of the developers add per-
missions more than it is needed which contradicts with the
users’ preferences. For example, to use the phone’s vibrator,
one needs to retrieve the vibrator object using the method
getSystemService(Context.VIBRATOR_SERVICE),
then call one of the following methods: hasVibrator (),
vibrate(), or cancel(). Note that, method
hasVibrator() returns a boolean and does not require
the vibrate permission (android.permission.vibrate),
while cancel() and vibrate() do. ListinglO0 shows
an example of native Android Java code that calls
hasVibrator() but does not require permission access
which is actually not needed. Intuitively, developers
may assume that method hasVibrator(), or/and class
method getSystemService() requires permission
android.permission.VIBRATE and adds it to the man-
ifest configuration file. Note that, if one replaces line 8
with v.vibrate(500), the permission access would be
required only for mobiles that have a vibrator. Consequently,
code modifications require a manual reconsideration of the
required permissions.

In our case, APIs to access devise-specific features are
called within handlers of listener GUI elements. Note that

S

Listing 6. Example of unknown shortcut handler.

menuPlannerButton.setOnClickHandler ("GoToActivity:Unknowns (menuPlannerInterface)");

Listing 7. Composition of BMI and Menu Planner modules.

LibModel healthAppModel = new LibModel("config.txt", bmiCalculatorModel, menuPlannerModel) ;

Listing 8. Configuration file connecting BMI and Menu Planner models.

Health App // project name
health.app // project package
John // project author

bmiCalculatorModel.userInputActivity // main activity of the composed model

// connections/mapping

bmiCalculatorModel .menuPlannerInterface -> menuPlannerModel.userInformationActivity
menuPlannerModel.bmiCalculatorInterface -> bmiCalculatorModel.userInputActivity

Listing 9. Successive composition of models.

LibModel modell2 = new LibModel("configl.txt", modell, model2);
LibModel modell23 = new LibModel("config2.txt", modell2, model3);

some external libraries may call some of these APIs. Our
permission detection/generation module must take into ac-
count: (1) modification (add/remove/update) of permissions;
(2) modification (add/remove/update) of APIs; (3) modi-
fication (add/remove/update) of external library that may
call those APIs. In other words, any of these modifications
should not drastically affect the code that automatically de-
tects and generates permissions. For this, we define a set
of templates that represent all the APIs that requires a per-
mission. For instance, object initializations (constructors),
method calls (method name, parameter types, calling ob-
ject’s type), etc. This gives us maintainability for future
permission modification as well as ease to extend our sup-
ported set of permissions. We define two types of templates
permissions.xml and permissionExternals.xml that
contain templates for native APIs and external library APIs,
respectively, that require permission access. The template
file is of the form depicted in Listing 11.

The template depicted in Listing 11 defines all the API
calls shown in 12 that require permission PERMISSION_1:

For example, the template for permission
android.permissions.VIBRATE is depicted in Listing13.

From the template of permission
android.permissions.VIBRATE, we can deduce that
permission android.permissions.VIBRATE is required
whenever one of the lines of code in Listing14 is detected.

5. Model-based Testing

In order to integrate efficient model-based testing in our
framework, we extend our model to be executable. That is,
each model can be represented as a state consisting of the
current activity, the value of the views, the value of the activ-
ities scope variables and global variables. We implement all
the functionalities to perform operations on a given model.
For example: (1) modify or get the value of a view; (2) per-
form click/event. In order to perform a click, we use Java re-
flection to execute the handler of a corresponding view (e.g.,
button). Performing operations modify the state of the model
accordingly.

The model-based testing framework consists of a module
LibTest that allows to perform high-level operations on
the model under test (e.g., setText, click, etc.). LibTest
takes a model under testing as input with an optional entry
point (i.e., name of an activity) and a set of test cases to be
performed.

Recall that, it is possible to test partial models separately
(unit testing) to find local errors and then test the composed
model (integration testing) to find interface errors.

Listing 15 shows an example of some test cases of BMI
calculator model. It mainly tests the redirection of activities
and the computation of BMI. It consists of the following
steps:

Listing 10. Example of native Android Java code that does not require permission.

@0verride

protected void onCreate(Bundle savedInstanceState) {
super .onCreate (savedInstanceState) ;
setContentView(R.layout.activity_main) ;

Vibrator v = (Vibrator) getSystemService(Context.VIBRATOR_SERVICE);
if (v.hasVibrator()){
Toast .makeText (context, message, duration).show();

}

Listing 12. API calls requiring permission PERMISSTON_1.

(Class_1) .method_1(paraml) ;

(Class_1) .method_2();

(Class_1) .method_3(param2, param3);

(Class_1) .method_3(param4) ;

(Class_2) .method_4(/*Any set of parameters*/);
(Class_2) .method_5(/*Any set of parameters*/);

Class_3 var = new Class_3(/*Any set of parameters*/);

Listing 14. API calls requiring permission android.permissions.VIBRATE.

// v is an object of type Vibrator
// E.g., Vibrator v = (Vibrator) getSystemService(Context.VIBRATOR_SERVICE);

v.vibrate(500); // vibrate(long milliseconds) method
v.vibrate({{12}, {23}, {12}}, 50); // vibrate(long[] pattern, int repeat) method

v.cancel(); // cancel() method

1. Create a LibTest instance that takes the model as input. 6. Code Generation
Note that, it is possible to give an activity entry point of Finally, given an Android model we implement a module
the model. that generates equivalent native Android code (along with
2. Set the weight and the height values and check if the its resources, manifest configuration file, etc.). This is done
values have been set properly. by calling generate (path) method on a given model. The

generated code preserves the order of statements and com-
ments. This allows to easily integrate other functionalities to
the generated code.

An example of code generation is depicted in Listing 16.

3. Perform click on calculateButton button and check if
(1) the next activity is the result activity; and (2) the BMI
was correctly computed.

Note that, if one performs an operation on a view that does
not exist in the current activity, an exception is thrown.

Listing 15. Example of test cases.

Q@Test
public void testcasel(LibModel bmiModel) {
try {
LibTest test = new LibTest(bmiModel) ;
test.setText ("height", "175");

assertEquals("Incorrect Height", "175", test.getText("height"));

test.setText ("weight", "70");

assertEquals("Incorrect Weight", "70", test.getText("weight"));

test.click("calculateButton");

assertEquals("Incorrect Activity", "resultActivity", test.getCurrentActivityName());
assertEquals("Incorrect Value", "22.9", test.getText("value"));

} catch (ElementNotFoundException e) {
fail ("Element Not Found: " + e);
}

Listing 16. Example of code generation.

public class Application {

public static void main(String[] args) throws FileNotFoundException, IOException {

healthAppModel.generate("gen/");
}

7. Tool-set - MoDroid

MoDroid! implements the Meta-Model and its supported
tools: models composition, permission detection, testing and
code generation. The tool is packed and compiled into a
single jar file. The jar file must be imported as a library
to the project being developed.

To promote extensibility and modularity of MoDroid we
implement a visitor pattern that traverses the tree structure
(GUI element, handlers, etc.) of an Android model. The
pattern takes as input an interface that declares methods to
be executed depending on the node that was localized. We
have developed several implementation of that interface:

1. Implementation to detect unknown interfaces (symbolic
activities) used in models composition.

2. Implementation that takes templates representing all the
APIs that require permissions and detect the required
permissions accordingly.

'http://ujf-aub.bitbucket.org/modroid/

Model
<templates>—>@ermissiou(D—>Gisitor(D—>

3. Implementation to make the model executable by per-
forming operations on a view (e.g., LibText) that are
used by model-based testing module.

[Partial] Model

Ctestcases(D—» testing(D—» visitor(D—»

4. Implementation to generate equivalent native Android
code (along with its resources, manifest configura-
tion file, etc.) from an Android model. Code genera-
tion module uses antlr and template engine library
StringTemplate [?] for parsing handlers and gener-
ating native Java Android from an Android model.

Model

Java
Native
Android

(%emplates

codegeneration(i>4444»<§isitor(i>44444

Listing 11. General shape of a template file for a given
permission.

<permission name="PERMISSION_1">
<class name="Class_1">
<method name="method_1">
<parameters>
<parameter type="paraml" />
</parameters>
</method>

<method name="method_2">
<parameters>
<parameter type=" " />
</parameters>
</method>
<method name="method_3">
<parameters>
<parameter type="param2" />
<parameter type="param3" />
</parameters>
<parameters>
<parameter type="param4" />
</parameters>
</method>
</class>

<class name="Class_2">
<method name="method_4" />
<method name="method_5" />
</class>

<class name="Class_3" />

</permission>

Listing 13. Template for
android.permissions.VIBRATE.

permission

<permission name="android.permissions.VIBRATE">
<class name="Vibrator">
<method name="vibrate" />
<method name="cancel">
<parameters>
<parameter type=" " />
</parameters>
</method>
</class>
</permission>

Figure 3 shows the development design-flow which is
based on MoDroid.

First, models are built and tested separately using high-
level primitives provided by MoDroid. Recall that, it is also
possible to build models without their handlers (e.g., only
GUI layouts) from an XML file and then handlers can be

@ — 71, — 713
A

button,
71, Connections
M. I; — Mp.Ag
N «

My.Tp — My.A,
My.Ts —> My.A

Gemplates codegeneration()
GQmplates @ermission(D—> visitor(D—> Native
Android
testcases() testing()

Figure 3. Development design-flow in MoDroid.

programmatically integrated. That is, using the Meta-Model,
one can still benefit from MVC design pattern supported for
native Android development.

Second, given a configuration file describing the mapping
between models, we generate and test the final model of the
application. It is worth mentioning that, we can build several
applications given different mappings without any modifica-
tions of the models. Finally, a native Java Android code is
generated including all the permissions that are required by
the core of the application. Developers may edit the gener-
ated code to add any extra functionalities.

8. Experimental Results

We have developed several applications using both native
Java Android and MoDroid. Table 1 compares the number
of lines of code between native Java android, MoDroid, and
automatically generated code.

It is clear that building an Android model drastically
reduces the number of lines of code. Moreover, it is much
less time consuming w.r.t. writing native Java Android. We
notice an overhead of ca. 25% in the automatically generated
code. This overhead is mainly due to the code generation
of handlers. In fact we duplicate handlers of different views
which can be technically eliminated by creating only one
method for the same handler code of different views.

Moreover, we have conducted other benchmarks to com-
pare the performance of our model-based testing frame-
work and the following tools that are currently widely used:
Robolectric, Robotium, and Espresso on both an Emulator
and a real device.

S . . Written Code Overhead Code
Application Name MoDroid | Generated | Native Reduction Generated
Breadcrumb Viewer 63 329 276 T77% 17%
Guessing Game 158 340 246 35% 27%
Scientific Calculator 180 377 282 36% 25%
Volleyball Statistics 137 702 510 73% 27%

Table 1. Code comparison.

Robotium and Espresso perform actions on an emulator
or on a real device; whereas Robolectric and MoDroid test-
ing do not need an emulator nor a real device. Taking this
factor into consideration, we would expect our testing frame-
work and Robolectric to have a better performance.

The first benchmark was performed on the scientific cal-
culator application that we developed using MoDroid. The
test actions were simply to click on values and operations;
then to check the output of the calculator.

Table 2 shows a comparison of the time taken to perform
test cases that require 10, 25, 50 up to 1 million operations
by all the tools. Operations consist of performing clicks and
text value modifications and searches.

As expected, Robolectric and MoDroid drastically out-
perform Robotium and Espresso. The results were close be-
tween Robolectric and MoDroid if we take into account the
initialization phase required by Robolectric. The time taken
to perform test cases requiring one million operations with
Robolectric is 27 seconds as opposed to 7.7 seconds using
MoDroid.

The second benchmark was performed on a Volleyball
Statistics application developed using MoDroid. It is com-
posed of two activities. The first activity is the splash screen
which contains a button to navigate to the second activity
where statistics are done. The second Activity is composed
of two teams and the players for each team. Each player has
two buttons to increment and decrement the points scored by
this player. This application can be used by coaches, statis-
tics frameworks, and so on.

We test this application by randomly selecting a player
and performing operations. We also test the navigation be-
tween activities.

Table 3 shows a comparison of the time taken to perform
test cases requiring 10, 25, 50 up to 1 million operations
by all the tools. Similar to the first benchmark, Robolectric
and MoDroid outperform other tools. Moreover, the time
taken by test cases that require one million operations with
Robolectric is 118 seconds as opposed to 12 seconds using
MoDroid.

9. Related Work

This paper advocates the use of modeling to improve the de-
velopment of Android applications. Modeling pars of an ap-
plication simplifies and accelerates the development process
and frees the developer from writing repetitive code.

The use of models in the development of Java appli-
cations has received a lot of attention, and several tools
are available. For instance, Eclipse Modeling Framework
(EMF) [?] is a powerful modeling tool based on two meta-
models Ecore, and Genmodel. EMF stores the model in-
formation using XMI (XML Metadata Interchange), and
creates its meta-model via UML, Java annotations, XML
Schema, and XMI. Similarly, Xcore [?], another tool from
Eclipse, is a textual syntax for Ecore. Both EMF and Xcode
are powerful tools when it comes to modeling Java applica-
tions. However, to the best of our knowledge they have not
been used to develop Android applications.

Mobile development frameworks are usually categorized
into native, cross-platform, and web based. A native mo-
bile development framework generates creates applications
in native code. Each of those categories has its advantages,
and disadvantages. For example, native has the best perfor-
mance, while web based allows for the fastest development.
We compare our approach with some of the frameworks in
those categories:

e native: App Inventor 2 [?] is a GUI-based tool which
supports the rapid development for simple applications.
However, when it comes to complex applications, App
Inventor 2 sets a lot of limits on the developer, and the
application itself since users cannot write their own code,
and are only limited to what is provided by the GUL

e hybrid: PhoneGap [?] and Cordova [? | are two com-
monly used cross platform mobile development frame-
works [?]. They allow the developer to generate mo-
bile applications that work on almost all devices by us-
ing HTML, CSS, JavaScript. Using JavaScript to inter-
act with the phone’s features prevents from using native
code since JavaScript is slower in processing data. More-
over, these frameworks lack the ability for background
processing, which might be important in several appli-
cations. Furthermore, performance issues were reported
due to the lack of hardware CSS acceleration of An-
droid [?].

¢ web-based: jQuery mobile [?] is one of the most used
web based mobile development frameworks. It allows
for extremely rapid development of responsive web
sites, and applications which can be accessed via all
smartphone, tablet, and desktop devices. Two main
disadvantages arise when using web based frameworks:

- Operations® 1 19 25 50 | 75 | 100 | 150 | 1000 10000 100000 1000000
Robotium 36 88 180 268 360 | 541 | 3605.4 | > 10 hours | > 10 hours | > 10 hours
Espresso Emulator 1.8 4.3 8.1 12 15.6 | 23.1 | 159.3 1645.5 16411.7 > 10 hours
Espresso Sony Z2 0.9 24 4.5 6.8 89 | 134 88.6 918.9 9189 > 10 hours
Robolectric 4.4 4.5 4.7 4.9 5.1 5.4 5.6 5.9 6.9 27
MoDroid 0.021 | 0.031 | 0.038 | 0.039 | 0.04 | 0.05 0.14 04 1.118 7.7
Table 2. Testing Time (in seconds).
Operations @\ 10 | 25 | 50 | 75 | 100 | 150 | 1000 | 10000 | 100000 1000000

Platform

Robotium 52 | 12.8 | 258 | 37.1 | 499 | 73.5 | 486.1 | 4861.1 | > 10 hours | > 10 hours

Espresso Emulator 3.1 7.6 | 155 | 22.5 | 29.9 | 43.6 | 290.9 | 2845.1 28760.2 > 10 hours

Espresso Sony Z2 1.1 2.6 5.5 7.7 10.3 | 15.3 | 111.9 | 1148.5 11275.2 > 10 hours

Robolectric 481 | 494 | 5.1 53 | 5.64 | 595 6.3 8.88 18.94 118.84

MoDroid 0.01 | 0.02 | 0.03 | 0.04 | 0.06 | 0.07 | 0.19 0.62 1.78 12.14

Table 3. Testing Time (in seconds).

poor performance [?], and loosing the ability to use
smartphone features.

Finally, none of the above Android development frameworks
allows for the composition and decomposition of applica-
tions. MoDroid allows for this, as shown in Section 3. More-
over, it allows for permission auto-detection and generation
as specified in Section 4. The main advantage is that any un-
needed permission will not be included in the Android Man-
ifest file allowing the application to be available for more
devices, and most importantly protecting the user’s privacy
when using additional unneeded permissions [?] [?].

On the other hand, testing of android applications become
more challenging. In general, android testing tools can be
divided into two main categories: GUI based testing and
non-GUI based testing.

GUI based testing: This category requires testing on an
emulator or on a real android device. Google present several
tools some of which fall under this category. First is Instru-
mentation [?], a set of classes and methods which control
Android components and how Android loads applications.
These classes allow the developer to test any component at
any given time in its lifecycle. Developing a test case with
this tool is time consuming and very complex. This lead
Google to develop another tool Espresso [?]. Espresso is
built over Instrumentation and its main goal is to simplify
testing techniques.

Another commonly used tool is Robotium [?]. This tool
is well documented and could be easily configured. In ad-
dition to the above, developing test cases is simple; all ac-
tion calls are being done on a single object solo. The main
disadvantage one would face using this tool is the speed of
running test cases.

Other tools under this category parse applications and
automatically generate test cases, e.g., Monkey [? |, Android
GUITAR [?] and ORBIT [?].

Whether on an emulator or on a real android device,
running an enormous number of test cases would require
a huge amount of time (see Section 8). This would make
GUI based testing tools fall a lot behind non-GUI based
testing tools. On the other hand, GUI based testing is more
expressive and would be useful to test hardware devises
(e.g., camera, sensors, etc.).

Non-GUI based testing: Robolectric [?] allows develop-
ers to test Android applications without the use of an An-
droid emulator or device. Robolectric presents the user with
several objects and methods to imitate an android applica-
tion’s lifecycle. The main advantage is the speed of running
test cases. We would be able to perform thousands of oper-
ations by the time GUI based testing is able to perform just
tens. Configuring this tool as well as writing test cases are
complicated and time consuming. Moreover, it is dependent
of several other libraries. In addition, developing test cases
is complicated. For instance, Listing 17 is a sample code to
access the value of a TextView using Robolectric.

Our framework falls under the category of non-GUI based
testing. We target ease of configuration, simplicity and per-
formance.

10. Conclusion and Future Work

This paper proposes a new way to develop Android applica-
tions. It proposes a compromise between expressiveness and
ease of development: at the price of slightly reduced expres-
siveness, MoDroid facilitates and speeds up the development
process. Yet, using our framework does not prevent develop-
ers from building applications using the full range of fea-

Listing 17. Sample code to access the value of a TextView using Robolectric.

ActivityClassName activity =
Robolectric.buildActivity(ActivityClassName.class).create().start().visible().get();

TextView results = (TextView) activity2.findViewById(viewID);

results.getText();

tures of Android because, after automatically generating the
base of the application, expert developers can still use An-
droid features by completing the generated code template.
Moreover, our framework introduces several interesting fea-
tures for developers: decomposition of applications for par-
allel development, automatic detection of permissions and
generation of Manifest, efficient model-based testing of ap-
plications, and automatic code generation of some parts of
applications.

In the near future, we plan to add several features in the
road-map of MoDroid. First, we plan to add emulators for
hardware components such as the GPS and camera. For in-
stance, this should allow the user to pre-define GPS loca-
tions to be passed to the application. Moreover, we plan to
extend MoDroid to support a high-level description of multi-
tasking, services, broadcast receivers, etc. Finally, we plan to
make MoDroid compatible with existing tools for automatic
test generation for Android.

