HTML Parser with Tag and Attirbute Spelling Correction

Chadi Helwe!, John Abou Jaoudeh!
I American University of Beirut, Beirut, Lebanon

As HTML invades the world wide web, more and more HTML pages are being written. And, almost all published websites online
do not comply with W3 standards. Several factors cause HTML invalidity, some of which are: incorrect placement of tags, invalid
attributes for tags, misspelled tags... Invalid HTML leads to issues such as: a decrease in loading DOM content, decrease in page
performance, incorrect display of content, and many others. To minimize these errors, we propose an algorithm for HTML spelling
correction, and an enhancement to missing tag correction. We believe that this would highly minimize the errors in HTML pages,
increase DOM content load time, and improve the performance of web pages especially on devices with limited resources such as

mobile devices.

Index Terms—HTML, Parser, Tag Correction, Spelling Correction.

INTRODUCTION

The Internet is an enormous library of information. This
information is mainly presented to people using websites.
Information on websites is displayed using HTML tags,
and attributes. Web browsers take this HTML code, and
parse it to produce a user friendly layout for non-computer
specialists; in other words, the information becomes readable
by everyone. A single web page usually contains at least a
hundred HTML tags, each HTML tag may include several
attributes. Those tags are written by developers.

If a person is writing an English essay, one would notice that
there would be several typing mistakes. Developers tend to do
spelling mistakes as well, in this incident what is misspelled
would be the HTML code: tags, and attributes. We bet you
did not notice attribute was misspelled in the title of this
proposal, or did you? When a web browser encounters a
misspelled tag, an error is not thrown; browsers continue
parsing the rest of the page ignoring this tag. In this case, the
output presented by the web browser is not equivalent to the
one intended by the developer. It is frequent that developers
do not notice this kind of errors.

Incorrect output is not the only problem caused by misspelling
words. If we take a closer look on how a browser renders
HTML code into graphics, we would notice that misspelled
tags, and attributes may also show a decline in a web page’s
performance mainly on devices with limited resources such as
smartphones; currently, the performance of HTML websites
on mobile devices is a hot topic, especially when comparing
HTMLS5 mobile application development to native application
development.

What if a web browser can overcome misspelled words?
We propose an HTML parser with word correction. Parser
spelling mistakes auto correction would improve a web page’s
performance, and correctness.

HTML KNOWN ISSUES

One of the main components of a web browser is the web
browser engine[1]; this component is a program which

transform content written in markup languages into the
graphics we see when we open a website.

The web browser engine consists of several modules, one of
which is the XML parser; this module parses the HTML file
to generate the DOM tree, and the render tree. The render
tree is then given to the rendering engine module, and is
converted into layers of paint, events, and event listeners. An
invalid HTML file would generate an incorrect render tree, in
other words, not the expected output.

Shan Chen et al. [2] state that only 5% of webpages are
valid according to HTML standards, thus generating incorrect
render, and DOM trees.

Incorrectly structured render and DOM trees would delay
the load time of the page, and would also cause decrease
in performance. One of the factors when measuring the
performance is the frames per second of a web page. In most
cases, for a page to run smoothly, fps should not drop below
30. This is mainly a big issue on mobile devices since more
scrolling is required, and every time a user scrolls, the web
browser engine needs to repaint; the paint is dependent on
the render tree. This becomes even more problematic when
CSS, and JavaScript since both need the DOM tree.

Another problem which invalid HTML is that each browser
displays it differently, mainly because each browser uses a
different web browser engine; Google Chrome and Opera use
Blink, Microsoft’s Internet Explorer and Spartan uses Trident
on Windows (Tasman on Macintosh), Firefox uses Gecko,
Safari uses WebKit, and Opera uses Presto. Each layout engine
has it’s own advantages, and disadvantages[3]. To the best
of our knowledge, none of these engines has HTML spelling
correction; but some of them do contain missing tag correction,
but not powerful enough to fix a lot of cases.

RELATED WORK

The problem of correcting HTML to become validwas tackle
by a lot of researchers, each one having their own approach.

Samimi et al.[4] suggested two plugins for Eclipse to solve
this problem for the PHP language. Those tools can help the
developer create valid HTML codes when it is generated by
PHP.

The first tool is PHPQuickFix, a plugin that can statically
check for incorrect HTML structure such as open, and not
ending tags. This tool uses a stack as a data structure to store
the open elements, and to pop them when PHPQuickFix finds
the ending tag. This approach cannot find, and correct all
HTML errors. One case is when HTML errors occur in a PHP
file where the data is acquired from an external data source,
such as a database.

The second tool provided by the authors will solve the problem
we have with PHPQuickFix. The approach of PHPRepair is
based on Input-Output based repair. This approach considers
that we have a collection of PHP files. The program tests the
output of the PHP file, and compares with the expected output;
if it passes the test that means the output generated by the PHP
script is correct.

t=(p,0)

t stands for the test, p stand for the actual output, and o stands
for the expected output. If the test fails, we need to generate a
correct PHP file that gives us the output we want. We say that
p and p’ are repair convertible if one can be generated from
the other by adding, removing or modifying HTML code
created by string literal in PHP like print or echo. According
to the paper, "a repair problem consists of a program p
and a set T of tests. A solution of the repair problem is a
program p’ such that p and p’ are repair convertible, and p’
passes all tests in 77’[4]. The output of the actual PHP file is
characterized as the concatenation of all HTML codes printed
as a literal string in PHP, c;....c,, = output.

According to this paper, those tools are efficient because they
can find and correct most of the HTML codes generated by
the PHP file. Those tools did not provide a way to solve
misspelled HTML’s keywords and is restricted to the PHP
language; language like Java, ASP or Ruby that can generate
HTML documents will not be able to benefit from those
plugins.

Moller and Schwarz[2] based their algorithm on abstract
versions of SGML by removing some features.The algorithm
considers that we have a DTD for one of the versions of
the HTML language. DTD is a formal structure of how a
document can be parsed.In this research, a DTD is described
as a content model automaton.

The algorithm uses a stack that called context stack to store the
state of the parser.According to the paper, the set of possible
contexts is described as

H=FExQxP(F)x*P(E)
(P(FE) denotes the powerset of E)

The context is defined as ¢, = (a,q,i,n) is at top of the
stack cy...c, € H*; a refers to the current context, ¢ refers
to the current state, ¢ refers to the current inclusion, and n
refers to the current exclusion.We say that an element b is
permitted in the current context if (a, ¢,i,n) if

d(q,b) # undefined. If we have a tag b that is above the
tag a in the context state that means that a is the parent of
b.In the algorithm, we have two functions called OmitStart
and OmitEnd. OmitStart may remove a start tag if this
exclusion does not cause ambiguity, and OmitEnd may
remove an end tag if it is followed by an end tag of another
element or if we have a new start tag.

For example, if the parser found a start tag like < a > which
is permitted in the current context, It will be pushed onto the
stack. Later on, if the parser find an end tag < /a >and
matches a; the current context will be popped off the
stack.During the parsing, if we got an error result it means
that it is a parsing error because the parser found an end tag
and its stack is empty.

The second approach given by the authors is based on the
algorithm given above, but instead of working only on
HTML documents they presented an algorithm that work on
the grammar of the language.The grammar of the language
is represented as a context-free grammar. The idea of their
algorithm is to generate constraints and then to solve those
constraints. According to the authors, their algorithm will
terminate successfully if and only if a solution exists to the
constraints that mean they have a valid context-free grammar.
This paper provided us with two algorithms to generate valid
HTML documents. The first algorithm works on the language
itself. The second algorithm works on the grammar of the
HTML language. According to the experimental results done
by the authors their algorithms found most of the errors in
an HTML document.Those two algorithms did not take into
consideration the problem to solve misspelled HTML’s
keywords. Our tool will be based on the first algorithm done
by Moller and Schwarz to solve missing tags in HTML.

OUR APPROACH

Our approach is to create a parser that can generate a valid
HTML code by correcting or suggesting the developer of
missing tags and misspelling tags or attributes. Our
suggestion can be better than the ones proposed in the
papers because we are taking into consideration the issue of
correcting misspelled tags. The solution is divided into two
phases: the first phase of the parser is to correct HTML
keywords and the second phase is to check for missing tags.

A. Correction of HTML Keyword

This phase of the tool is responsible to correct misspelled
tags and attribute in the HTML language.We propose to use
the edit distance[5] algorithm to solve this problem. Edit
distance algorithm is widely used in information retrieval to
check for the correct misspelled keyword by choosing the
nearest one.

The edit distance algorithm works as follow; it takes two
strings and checks for the minimum edit operations to
transform the first string to the second string.The edit
operations are inserting a character, substituting a character
or deleting a character.For example, if the developer wrote
<hml> instead of <html> the edit distance between them is
1; our tool will able into transform <hml> to <html>. To

calculate the edit distance between two strings we need to
use dynamic programming; this algorithm is discussed by
Manning, Raghavan, and Schutze(2008). In addition to the
algorithm, we need to use a set as a data structure to store
all the HTML keywords. We need to check if a tag or
attribute ¢ of the HTML document is found in the set. if it is
in the set, it is a correct keyword; if not we need to compute
the edit distance ¢ with all the keywords in the set and we
need to transform ¢ to the keyword that have the smallest
edit distance. If we have more than one small equal edit
distance with different keywords, we need to suggest to the
developer the different possibilities.

Algorithm 1 Correction of HTML Keyword

Require: HTML document, Set s, Stack sy
while loop till the end of the HTML document do
t is an HTML’s token
if ¢ is not found in the set s then
while loop each HTML’s keyword ¢; of the set s do
min = EditDistance(Z,t1)
if we have more than one min then
push min into the stack
else
we have only one min
end if
end while
if s; is empty then
correct ¢ acording to the t1 with min edit operations
else
suggest to the developer ¢t1 with the same min edit
operations from the stack
end if
end if
end while

Algorithm 2 Edit Distance
Require: String s and String s;
int m[i, j] =0
for i = 1 to |s1| do

m[i,0] =i

end for

for j = 1to |s1]| do
m[],O] =]

end for

for i = 1 to |s1| do
for j =1 to |s2| do
m[i,j] = min { m[i — 1,5 — 1] + if(s[i] = s1[j]) then
Oelse 1,
mli —1,7] + 1, m[i,j — 1] + 1}
end for
end for
return m[|s|, |s1]]

B. Correction of Missing Tag

This phase of the tool is responsible to check for missing
tags in the HTML language. Our approach is based on the

HTML parser algorithm proposed by Moller and Schwarz
(2011). The algorithm uses a stack as a data structure.The
stack stores the open tag elements.For example, each time
the parser finds a new open tag like <p> it will push it into
the stack.The algorithm will continue scanning until the end
of the HTML document.When the algorithm finds the closing
tag </p> it will pop the first element of the first stack.If the
algorithm finds a different closing element, that does not
match the first element of the stack; the algorithm will add
the appropriate closing tag and repeat the process of scanning
from the beginning of the HTML documennt to check if the
HTML document is valid. If the parser finds an ommision of
the start tag it will add the open tag element and repeat the
scanning. Adding open and close tag elements in the HTML
document is based on the DTD of the HTML language.

Algorithm 3 Missing Tag Correction
Require: DTD, HTML document, Stack s
push the first the token <html> into s
while loop till the end of the HTML document do
t is an HTML’s keyword
if ¢ is an open tag then
push ¢ into s
else if ¢ is an close tag AND it matches the first element
in s then
pop the first element from s
else if ¢ is an close tag AND it does not match the first
element in s then
add the appropriate close tag by checking the DTD
retry the parsing with the new HTML document
else if we have an ommission of the open element AND
we have the close element then
add the appropriate open tag by checking the DTD
retry the parsing with the new HTML document
end if
end while

CONCLUSION

We reviewed some papers that talk about HTML correction,
but most of them did not take into consideration the
correction of misspelled HTML keyword. We proposed an
HTML parser that could create a new HTML document by
correcting or suggesting to the developer errors that were
found by our tool. Our proposed parser was not yet created
because of the time constraint. We are thinking in the future
to build our suggested parser by adding some improvements
to the three algorithms we talked about in this paper.

REFERENCES

[1]1 A. Grosskurth and M. W. Godfrey, “A reference architecture for web
browsers,” in Software Maintenance, 2005. ICSM’05. Proceedings of
the 21st IEEE International Conference on. 1EEE, 2005, pp. 661-664.

[2] M. Schwarz et al., “Html validation of context-free languages,” in
Foundations of Software Science and Computational Structures.
Springer, 2011, pp. 426-440.

[3] Wikipedia, “Comparison of layout engines (html5) — wikipedia, the
free encyclopedia,” 2014, [Online; accessed 12-April-2015]. [Online].
Available: http://en.wikipedia.org/w/index.php?oldid=640303446

[4] H. Samimi, M. Schifer, S. Artzi, T. Millstein, F. Tip, and L. Hendren,
“Automated repair of html generation errors in php applications using
string constraint solving,” in Proceedings of the 34th International
Conference on Software Engineering. 1EEE Press, 2012, pp. 277-287.

[5] C. D. Manning, P. Raghavan, and H. Schiitze, Introduction to
information retrieval. Cambridge university press Cambridge, 2008,
vol. 1.

